n^(n+1)>(n+1)^n的數學歸納法(急)

2010-01-17 11:45 pm
如題
證明 n^(n+1)>(n+1)^n 當n>=3時

請使用數學歸納法證明

急需 感謝
更新1:

n大於等於3

更新2:

除了樓下第一位說不能用數學歸納法外 如果有其他解法的也提出來吧@@ 不過還是以數學歸納法為優先 ^^" 畢竟老師說這用數學歸納法可以導出來

回答 (2)

2010-01-18 5:19 am
✔ 最佳答案
設 n=k時,k^(k+1) > (k+1)^k………..(1)
(由(k+1)^2>k(k+2)…..得(k+1)/k > (k+2)/(k+1)
得[(k+1)/k]^(k+1)> [(k+2)/(k+1)] ^(k+1)…..(2)
(1)*(2) 得(k+1)^(k+2) > (k+2)^(k+1)
參考: 不等式專書
2010-01-18 1:24 am
I think it is impossible to use M.I. to prove the required result. Here is my proof :

n^(n+1) > (n+1)^n <=> n > (1+1/n)^n
As we know that a_n=(1+1/n)^n is an increasing sequence which is bounded by e < 3. So n^(n+1) > (n+1)^n when n >=3


收錄日期: 2021-04-26 13:50:28
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100117000010KK04899

檢視 Wayback Machine 備份