Deduction

2010-01-16 11:27 pm
A sequence a1, a2, a3 ..., an where a1 = 1, a2 = 1 and an+2 = an+1 + 2an for all n = 1, 2, 3, …
Let an = A*α^n + B*β^n, where α =/= β
Prove that an = 1/3[2^n - (-1)^n]
更新1:

I dont mean by using MI to prove this statement. What I want to ask is how to get the formula.

回答 (1)

2010-01-17 12:07 am
✔ 最佳答案
Let P(n) be the statement a_n=(1/3)[2^n-(-1)^n]

when n=1, a_1=1=(1/3)[2-(-1)]. P(1) is true
when n=2, a_1=1=(1/3)[2^2-(-1)^2]. P(2) is true

Assume that when n=k, P(k) is true, when n=k+1
a_k+1=a_k+a_k-1
=(1/3)[2^k-(-1)^k]+(2/3)[2^(k-1)-(-1)^(k-1)]
=(1/3)[2^k-(-1)^k+2^k-(-1)^2(k-1)]
=(1/3)[2^(k+1)+(-1)^(k+1)]

So P(k+1) is true. By M.I. for all positive integer n, a_n=(1/3)[2^n-(-1)^n]



2010-01-16 22:26:19 補充:
This is just the second order difference equation. Consider the chacteristic equation
λ^2=λ+2=>λ^2-λ-2=0=>(λ-2)(λ+1)=0
=>λ=2 or -1

So a_n=A2^n+B(-1)^n. Using a_1=a_2=1
2A-B=1,4A+B=1=>A=1/3,B=-1/3

So a_n=(1/3)[2^n-(-1)^n]. OK ?


收錄日期: 2021-04-23 18:28:31
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100116000051KK00831

檢視 Wayback Machine 備份