Laurent series

2010-01-16 4:34 pm
Find the coefficients A_(-1),A_0,and A_1, of the Laurent series
sigma{An*z^n} n=-infinity~+infinity
of secz in pi/2<lzl<3pi/2

回答 (4)

2010-01-17 11:12 am
✔ 最佳答案
Find the coefficients A_(-1),A_0,and A_1, of the Laurent series
sigma{An*z^n} n=-infinity~+infinity
of secz in pi/2<lzl<3pi/2
secz=1/cosz
=1/[1-z^2/2 + z^4/24+...]
(用長除法得)
= 1+ z^2/2 + (4/24)z^4+...

故 A(0)=1, A(1)=A(-1)=0=A(3)=A(5)..., A(2)= 1/2, A(4)=5/24, ...
2010-01-20 8:25 pm
http://tw.knowledge.yahoo.com/question/question?qid=1510010301774
沈用戶死不認錯,硬拗,甚至對指正他的人做人身攻擊。
希望網友們勸勸他勇於認錯。
2010-01-17 7:20 am
恩..我也是這麼想~
此題是偶函數~~
2010-01-16 5:33 pm
A_0=1, A_1=A_(-1)=0 simply calculated by Laurent Theorem


收錄日期: 2021-05-02 00:04:21
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100116000016KK01586

檢視 Wayback Machine 備份