數學問題 differentiation
a)find dy/dx:
1) y=2x-cos2x
2) y=(x^2+x)(3x+2)
3) y=(1+6x)^1/2
b)differentiate the following wiht respect to x.
1) (x-4)^1/2(x^2-2)^5
2) (x^2+6)/(x^3+x-1)^1/2
回答 (2)
a)find dy/dx
1) y=2x-cos2x
Sol
dy/dx=d2x/dx-dcos2x/dx
=2-(dcos2x/2x)*(d2x/dx)
=2+2sin2x
2) y=(x^2+x)(3x+2)
Sol
dy/dx=d(x^2+x)(3x+2)/dx
=d(3x^3+5x^2+2x)/dx
=9x^2+10x+3
3) y=(1+6x)^1/2
Sol
dy/dx=d(1+6x)^(1/2)/dx
=[d(1+6x)^(1/2)/d(1+6x)][d(1+6x)/dx]]
=3(1+6x)^(-1/2)
b)differentiate the following wiht respect to x.
1) (x-4)^1/2(x^2-2)^5
Sol
d(x-4)^(1/2)*(x^2-2)^5/dx
=(x-4)^(1/2)*[d(x^2-2)^5/dx]+(x^2-2)^5*[d(x-4)^(1/2)/dx]
=(x-4)^(1/2)*5(x^2-2)^4(2x)+(x^2-2)^5*(1/2)(x-4)^(-1/2)
=(x-4)^(-1/2)(x^2-2)^4[10x(x-4)+(1/2)(x^2-2)]
=(x^2-2)^4[20x^2-80x+x^2-2]/[2(x-4)^(1/2)]
=(x^2-2)^4(21x^2-80x-2)/[2(x-4)^(1/2)]
2) (x^2+6)/(x^3+x-1)^1/2
Sol
d(x^2+6)/(x^2+x-1)^(1/2)/dx
=d(x^2-6)(x^2+x-1)^(-1/2)/dx
=(x^2-6)[d(x^2+x-1)^(-1/2)/d(x^2+x-1)]*[d(x^2+x-1)/dx]
+(x^2+x-1)^(-1/2)*[d(x^2-6)/dx]
=(x^2-6)(-1/2)(x^2+x-1)^(-3/2)*(2x+1)+(x^2+x-1)^(-1/2)*(2x)
=(x^2+x-1)^(-3/2)/2[-(x^2-6)(2x+1)+(x^2+x-1)(4x)]
=(x^2+x-1)^(-3/2)/2[-2x^3-x^2+12x+6+4x^3+4x^2-4x]
=(2x^3+3x^2+8x+6)/[2(x^2+x-1)^(3/2)]
收錄日期: 2021-04-22 00:45:59
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100112000051KK01676
檢視 Wayback Machine 備份