數學 二元一次方程式 根的性質

2010-01-13 3:12 am
it's given that a^(2)-6ab+9b^(2)=(a-3b)^(2)

if x^(2)+2(a-1)x-(a^(2)+4a-6ab+9b^(2))=0 has a double real root

find the values of a and b,where a and b are constants.

(a=-1 b=-1/3)

please show the steps

回答 (1)

2010-01-13 3:26 am
✔ 最佳答案
a^2 - 6ab + 9b^2 = (a - 3b)^2
x^2 + 2(a - 1)x - (a^2 + 4a - 6ab + 9b^2) = 0 has double real root
=> discriminant = 0
Discriminant = 4(a-1)^2 + 4(a^2 + 4a - 6ab + 9b^2) = 0
(a-1)^2 + (a^2 + 4a - 6ab + 9b^2) = 0
(a-1)^2 + 4a + (a^2 - 6ab + 9b^2) = 0
a^2 - 2a + 1 + 4a + (a-3b)^2 = 0
a^2 + 2a + 1 + (a-3b)^2 = 0
(a+1)^2 + (a-3b)^2 = 0
Hence a + 1 = 0 => a = -1
a - 3b = 0
b = a/3 = -1/3


收錄日期: 2021-04-23 23:26:00
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100112000051KK01281

檢視 Wayback Machine 備份