✔ 最佳答案
Let P(n) be the statement "1 + 2(2) + 3(2)^2 + 4(2)^3 + ... + n*2^(n-1) = n*2^(n+1) - (n+1)2^n + 1"
When n=1, L.H.S.=1,R.H.S.=1*4-2*2+1=1; P(1) is true.
Assume that P(k) is true.
When n=k+1
L.H.S.
=1 + 2(2) + 3(2)^2 + 4(2)^3 + ... + k*2^(k-1)+(k+1)*2^(k)
=k*2^(k+1) - (k+1)2^k + 1 + (k+1)*2^(k)
=k*2^(k+1) + 1
=(2k+2-k-2)2^(k+1) + 1
=(k+1)*2^(k+2) - (k+2)2^(k+1) + 1
=R.H.S.
So,P(k+1) is true. By M.I. for all positive n, 1 + 2(2) + 3(2)^2 + 4(2)^3 + ... + n*2^(n-1) = n*2^(n+1) - (n+1)2^n + 1