✔ 最佳答案
Since
[(n+1)^4 - n^4] + [n^4 - (n-1)^4] + [(n-1)^4 - (n-2)^4] +...+ 2^4] - [2^4 - 1^4 ] =
(n+1)^4 - 1^4
(4n^3 + 6n^2 + 4n + 1) + [4(n-1)^3 + 6(n-1)^2 + 4(n-1) + 1] + ...
+ 4(1)^3 + 6(1)^2 + 4(1) + 1 = (n+1)^4 - 1
4(1^3 + 2^3 +...+ n^3) + 6(1^2 + 2^2 + ... + n^2) + 4(1+2+...+n) + n
= (n+1)^4 - 1
4(1^3 + 2^3 + ... + n^3) + 6 n(n+1)(2n+1)/6 + 4 n(n+1)/2 + n
= (n+1)^4 - 1
4(1^3 + 2^3 + ... + n^3) = (n+1)^4 - 1 - n(n+1)(2n+1) - 2n(n+1) - n
4(1^3 + 2^3 + ... + n^3) = (n+1)[(n+1)^3 - n(2n+1) - 2n - 1)
4(1^3 + 2^3 + ... + n^3) = (n+1)(n^3 + 3n^2 + 3n + 1 - 2n^2 - n - 2n - 1)
4(1^3 + 2^3 + ... + n^3) = (n+1)(n^3 + n^2)
4(1^3 + 2^3 + ... + n^3) = (n+1)(n^2)(n+1)
1^3 + 2^3 + ... + n^3 = (1/4)[n(n+1)]^2
1^3 + 2^3 + ... + n^3 = [n(n+1)/2]^2
1^3 + 2^3 + 3^3 + ... + n^3 = (1 + 2 + 3 + ... + n)^2
2010-01-15 19:55:06 補充:
Line 2 should be :
[(n+1)^4 - n^4] + [n^4 - (n-1)^4] + [(n-1)^4 - (n-2)^4] + ... +[3^4 - 2^4] + [2^4 - 1^4 ] =