✔ 最佳答案
樓上解答精彩,
不過 如果真係 做功課 / 測驗 / 考試 的話
就 執靚少少會好 D ~
基本上我會同 樓上差唔多 ~
只係會 多出 "唔 D 兩次 都可以決定係 max 定係 min" 的做法 ~~
兩粒 * 之間 是我的個人附加說明 ~
y = x + 2sinx
dy/dx = 1 + 2cosx
d2y/dx2 = -2sinx
for dy/dx = 0
=> 1 + 2cosx = 0
cosx = -0.5
x = 2 pi / 3 or x = 4 pi / 3 * 角度最好用 radian *
* 以下兩個方法 都可以分辨 哪個是 maximum ~ 哪個是 minimum *
* 任選其一 即可 *
* ** 方法一 (跟樓上一樣) ** *
when x = 2 pi / 3,
d2y/dx2 = -2sin(2 pi / 3)
= -開方(3)
< 0
so y is maximum when x = 2 pi / 3, and in this case
y = (2 pi / 3) + 2sin(2 pi / 3)
y = (2 pi / 3) + 開方(3) * 或者 近似值 3.8264 (corr. to 4 d.p.) *
when x = 4 pi / 3,
d2y/dx2 = -2sin(4 pi / 3)
= 開方(3)
> 0
so y is minimum when x = 4 pi / 3, and in this case
y = (4 pi / 3) + 2sin(4 pi / 3)
y = (4 pi / 3) - 開方(3) * 或者 近似值 2.4567 (corr. to 4 d.p.) *
* ** 方法二 (不用D兩次) ** *
when x is slightly < 2 pi / 3, dy/dx > 0
when x is slightly > 2 pi / 3, dy/dx < 0
so y is maximum when x = 2 pi / 3, and in this case
y = (2 pi / 3) + 2sin(2 pi / 3)
y = (2 pi / 3) + 開方(3)
when x is slightly < 4 pi / 3, dy/dx < 0
when x is slightly > 4 pi / 3, dy/dx > 0
so y is minimum when x = 4 pi / 3, and in this case
y = (4 pi / 3) + 2sin(4 pi / 3)
y = (4 pi / 3) - 開方(3)