Differentiation

2010-01-01 6:26 am
y=x+2sinx ,where 0≦x≦2π

find the max and mini values of y

回答 (2)

2010-01-01 9:10 am
✔ 最佳答案
樓上解答精彩,
不過 如果真係 做功課 / 測驗 / 考試 的話
就 執靚少少會好 D ~

基本上我會同 樓上差唔多 ~
只係會 多出 "唔 D 兩次 都可以決定係 max 定係 min" 的做法 ~~

兩粒 * 之間 是我的個人附加說明 ~

   y = x + 2sinx
 dy/dx = 1 + 2cosx
d2y/dx2 = -2sinx

for   dy/dx = 0
=> 1 + 2cosx = 0
    cosx = -0.5
      x = 2 pi / 3  or  x = 4 pi / 3   * 角度最好用 radian *

* 以下兩個方法 都可以分辨 哪個是 maximum ~ 哪個是 minimum *
* 任選其一 即可 *

* ** 方法一 (跟樓上一樣) ** *
when x = 2 pi / 3,
d2y/dx2 = -2sin(2 pi / 3)
    = -開方(3)
   < 0
so y is maximum when x = 2 pi / 3, and in this case
   y = (2 pi / 3) + 2sin(2 pi / 3)
   y = (2 pi / 3) + 開方(3)   * 或者 近似值 3.8264 (corr. to 4 d.p.) *

when x = 4 pi / 3,
d2y/dx2 = -2sin(4 pi / 3)
    = 開方(3)
   > 0
so y is minimum when x = 4 pi / 3, and in this case
   y = (4 pi / 3) + 2sin(4 pi / 3)
   y = (4 pi / 3) - 開方(3)   * 或者 近似值 2.4567 (corr. to 4 d.p.) *

* ** 方法二 (不用D兩次) ** *
when x is slightly < 2 pi / 3, dy/dx > 0
when x is slightly > 2 pi / 3, dy/dx < 0
so y is maximum when x = 2 pi / 3, and in this case
   y = (2 pi / 3) + 2sin(2 pi / 3)
   y = (2 pi / 3) + 開方(3)

when x is slightly < 4 pi / 3, dy/dx < 0
when x is slightly > 4 pi / 3, dy/dx > 0
so y is minimum when x = 4 pi / 3, and in this case
   y = (4 pi / 3) + 2sin(4 pi / 3)
   y = (4 pi / 3) - 開方(3)
參考: 我
2010-01-01 6:48 am
y=x+2sinx
dy/dx = 1+2cosx
dy/dx = 0
1+2cosx =0
cosx = -1/2
x = (2/3)(pi) or (4/3)(pi)
d^2y/dx^2 = -2sinx
when x= (2/3)(pi)
d^2y/dx^2 = -2sin[(2/3)(pi)] = -sqrt(3) < 0
∴ x= (2/3)(pi), y has max.
y = (2/3)(pi) + 2sin[(2/3)(pi)]
= (2/3)(pi) + sqrt(3)
= 3.83
when x= (4/3)(pi)
d^2y/dx^2 = -2sin[(4/3)(pi)] = sqrt(3) > 0
∴ x= (4/3)(pi), y has min.
y = (4/3)(pi) + 2sin[(4/3)(pi)]
= (4/3)(pi) - sqrt(3)
= 2.46

2010-01-01 11:15:20 補充:
多謝 ionescel 的意見


收錄日期: 2021-04-13 17:00:52
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091231000051KK01768

檢視 Wayback Machine 備份