Maths(HKMO)

2010-01-01 2:59 am
Suppose log x t = 6, log y t = 10 and log z t = 15. Find the value of log xyz t.

回答 (2)

2010-01-01 4:34 am
✔ 最佳答案
log t/log x=6, log t/log y=10 and log t/log z=15
so, log x/log t=1/6, log y/log t=1/10 and log z/log t=1/15

log x / log t + log y / log t + log z / log t = 1/6+1/10+1/15 = 10/30 = 1/3

(log x+log y+log z)/ log t =1/3

log xyz / log t = 1/ 3

So, log t / log xyz =3

The value of d is 3.
2010-01-01 3:10 am
因log(basex) t= 6, log(base y) t= 10, log(base z) t= 15,且x,y,z,t都大於0

即t=x^6,t=y^10,t=z^15

==>x=t^(1/6),y=t^(1/10),z=t^(1/15)

==>xyz=t^(1/6+1/10+1/15)=t^(1/3)

則t=(xyz)^3

所以log(base xyz) t=3

即d=3

log(base xyz) t=d


收錄日期: 2021-04-23 18:25:26
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091231000051KK01422

檢視 Wayback Machine 備份