Quadratic function--F.4

2009-12-31 4:23 am
Let k be a constant. If y= -4(x^2) + 6x + (2k-3) < 0 for any real number x, find the range of values of k.



*解得詳細D.....thx

回答 (2)

2009-12-31 4:30 am
✔ 最佳答案

Because y = -4(x^2) + 6x + (2k-3) is smaller than zero, that means it is not possible to have y = -4(x^2) + 6x + (2k-3) = 0. The quadratric equation -4(x^2) + 6x + (2k-3) = 0 has no real root. Hence the discriminant < 0
Discriminant = 6^2 - 4(-4)(2k - 3) < 0
36 + 32k - 48 < 0
32k < 12
k < 3/8
2009-12-31 5:06 am
y-coordinate of vertex = (2k-3) - 6^2/4(-4) < 0

k < 3/8


收錄日期: 2021-04-13 17:00:52
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091230000051KK01819

檢視 Wayback Machine 備份