let α + β = p, αβ = q, where p ≠ 1 and a sequence of real numbers (u2), (u3), (u4)..., (un), ... defined by
(u2) = p-q/(p-1) and (u k+1) = p-q/(u k) (k≧2)
show that (un) = {[α^(n+1) - β^(n+1)] - (α^n - β^n)} / {(α^n - β^n ) - [α^(n-1) - β^(n-1)]}
2.a let f(x) be a function defined on [a,b], such that
f(x1) + f(x2) ≦2 f[(x1+x2)/2], for all (x1),(x2) ε [a,b]
for each positive integer n , consider the statement I(n) :
If (xi) ε [a,b], i = 1,2,3,........n
f(x1) + f(x2) + f(x3) + ......f(xn) ≦nf[(x1+x2+........xn)/n]
(i) prove by induction that I(2^k) is true for evert positive integer k.
(ii) probe that if I(n) (n≧2) is true , then I(n-1) is true.
(iii) prove that I(n) is true for every positive integer n
b. by considering f(x) = sinx defined on [0,π], show that
1/n (sin(θ1) + sin(θ2) + ...+ sin(θn) ≦sin[(θ1 + θ2 + ....θn)/n]
for 0 ≦θi ≦π (i = 1,2,3............n)
更新1:
http://farm3.static.flickr.com/2509/4221713257_eb789ecbbb_b.jpg http://farm3.static.flickr.com/2784/4221712575_84e0d3ebe8_b.jpg 第6和第10條 自認好人的請做埋第7條