HELP Maths question

2009-12-29 2:36 am
In Triangle ABC as shown, BA, DF and EG are paralleel lines and BD = CE. Prove that AB= FD + GE



Figure:
http://i890.photobucket.com/albums/ac104/s102003/485ffddc.png

回答 (2)

2009-12-29 2:57 am
✔ 最佳答案
Since AB//DF//EG,
angle ABC = angle EDC = angle GEC
angle BAC = angle DFC = angle EGC
angle ACB = angle FCD = angle GCE
Therefore triangle ABC, FDC and GEC are similar (AAA)
AB/BC = FD/DC = GE/EC
AB/(BD + DE + EC) = FD/(DE + EC) = EG/EC
FD = AB(DE + EC)/(BD + DE + EC)
EG = AB(EC)/(BD + DE + EC)
Therefore FD + EG
= AB(DE + EC)/(BD + DE + EC) + AB(EC)/(BD + DE + EC)
= AB(DE + EC + EC)/(BD + DE + EC)
Since BD = EC (given)
= AB(DE + BD + EC)/(BD + DE + EC)
= AB
2009-12-29 4:48 am
Draw a point M on AB such that MD //AC, therefore, AMDF is a parallelogram, so DF = AM ..........(1)
For triangle MBD and triangle GEC
BD = EC ( given)
Angle BMD = angle BAF ( corr. angle MD//AF)
But angle BAF = angle EGC ( corr. angle AB//EG)
therefore, angle BMD = angle EGC
Angle MDB = angle GCE ( corr. angle AC//MD)
Therefore triangle MBD congruent triangle GEC (AAS)
so MB = GE .............(2)
(1) + (2) we get
AM + MB = AB = DF + GE.


收錄日期: 2021-04-23 23:21:34
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091228000051KK01419

檢視 Wayback Machine 備份