2條 Natural Logarithms equation

2009-12-23 1:30 am
1. e^(2x+1)+ 2e^(x+2)- 3 =0

2. 2e^(-2x)+ 11e^(-x)- 21 =0

唔該哂=]
更新1:

Find x

回答 (1)

2009-12-23 1:48 am
✔ 最佳答案
1. e^(2x+1)+ 2e^(x+2)- 3 =0
e(e^x)^2 + 2(e^2)(e^x) - 3 = 0
e^x = {- 2e^2 +/- √[4e^4 - 4e(-3)]} / 2e
e^x = - 2e^2 +/- 2√(e^4 + 3e) / 2e
e^x = 0.195940953 or - 5.63250461(rejected)
x = In 0.195940953
x = -1.6299419
2. 2e^(-2x)+ 11e^(-x)- 21 =0
2(e^-x)^2 + 11e^-x - 21 = 0
(2e^-x - 3)(e^-x + 7) = 0
e^-x = 3/2 or e^-x = - 7(rejected)
-x = In 3/2
x = - In 3/2 = -0.4054651


收錄日期: 2021-04-21 22:05:59
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091222000051KK01098

檢視 Wayback Machine 備份