the factorization of the polynimial 144-(x-8)2power?

2009-12-19 8:02 am
can you help me solve this...

回答 (7)

2009-12-19 9:52 am
✔ 最佳答案
This is the difference of 2 squares a² - b² = (a + b)(a - b)
= 144 - (x - 8)² [ Firstly,write 144 in the square form ]
= (12)² - (x - 8)²
= [12 + (x - 8)][12 - (x - 8)] Open the Parenthesis
= (12 + x - 8)(12 - x + 8) [ Arrange similar terms ]
= (12 - 8 + x)(12 + 8 - x) [ Solve ]
= (4 + x)(20 - x)
hope i helped
2009-12-19 4:07 pm
Difference of squares:
= 12² - (x-8)²
= (12+(x-8)) (12-(x-8))
= (4+x) (20-x)
= -(x-20)(x+4)
2009-12-19 4:10 pm
-(x-8)^2 = -(x-8)(x-8) =-( x^2 -16x + 64)

-x^2 +16x - 64 + 144
-x^2 + 16x +80

(-x + 20) (x+4)
2009-12-19 11:55 pm
144 - ( x - 8 ) ²

[ 12 - ( x - 8 ) ] [ 12 + ( x - 8 ) ]

[ 20 - x ] [ 4 + x ]
2009-12-19 10:37 pm
144 - (x - 8)^2
= 12^2 - (x - 8)^2
= [12 + (x - 8)][12 - (x - 8)]
= (12 + x - 8)(12 - x + 8)
= (x + 4)(-x + 20)
= -(x + 4)(x - 20)
2009-12-19 8:21 pm
144 - (x - 8)^2. Factor as the difference of two squares.

12^2 - (x - 8)^2.

[(12 - (x - 8)][(12 + (x - 8)]

[12 - x + 8][12 + x - 8]

[20 - x][x + 4] Answer
參考: Self
2009-12-19 4:31 pm
=[12-(x-8)][12+(x-8)]=(20-x)(4+x)

God bless you.


收錄日期: 2021-05-01 12:57:09
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091219000249AAixPMo

檢視 Wayback Machine 備份