riemann sum

2009-12-20 4:15 am


as follows~~~~~~~~~~~~~~


圖片參考:http://i256.photobucket.com/albums/hh182/zilu_photo/sshot-2009-12-19-20-12-19.png
更新1:

STEVIE-G™ you get the point it sums from j=1 to n^2, not n

回答 (3)

2009-12-20 7:16 am
✔ 最佳答案
lim Σ n/(n^2+j^2)
=lim Σ (1/n)[n^2/(n^2+j^2)]
=lim Σ (1/n)[1/(1+(j/n)^2)]
=∫ 1/(1+x^2) dx
=tan^(-1) x
=pi/2
2009-12-21 7:06 am
lim Σ (1/n)[1/(1+(j/n)^2)]
when j = 1, the fraction is 1 / (1 + x^2) and x = (1/n)
when j = n^2, the fraction is 1 / (1 + x^2) and x = (n^2/n) = n
So the upper limit is n (infinity) the lower limit is 1/n (0)
atan(infinity) - atan(0) = pi/2
2009-12-20 8:21 pm
What's the upper/lower limit of the definite integral?


收錄日期: 2021-04-22 00:49:49
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091219000051KK01203

檢視 Wayback Machine 備份