✔ 最佳答案
prove
cos(x)+cos(x+a)+...+cos(x+na)=sin[0.5(n+1)a]*cos(x+0.5na)/sin(0.5a)
n=0時左式=cosx=右式
設n=k時原命題成立
則n=k+1時
cos(x)+cos(x+a)+...+cos(x+ka)+cos[x+(k+1)a]
= {sin[0.5(k+1)a]*cos[x+0.5ka)]/sin(0.5a)}+cos(x+(k+1)a)
={sin[0.5(k+1)a]*cos[x+0.5ka]+sin(0.5a)cos[x+(k+1)a]}/sin(0.5a)
={sin[x+0.5(2k+1)a]+sin[0.5a-x]+sin[x+(k+1.5)a]+sin[-x-(k+0.5)a]}/2sin(0.5a)
= { sin[0.5a-x]+sin[x+(k+1.5)a]+ sin[x+0.5(2k+1)a] +sin[-x-(k+0.5)a]}/2sin(0.5a)
={sin[0.5(k+2)a]cos[-x-0.5(k+1)a]+sin0cos[x+(k+0.5)a]}/sin(0.5a)
=sin[0.5(k+2)a]cos[x+0.5(k+1)a]/sin(0.5a)
亦成立
所以由數學歸納法得知原命題成立,故得證
2009-12-18 23:40:06 補充:
如看不懂請大大來信
2009-12-19 00:00:38 補充:
真的是好久不見XDD
看了菩提大的證明簡直令我大囧
太........令人驚訝了XDDD