Gravitation of hollow sphere

2009-12-17 7:06 pm
Imagine there's a planet in shape of a big hollow thin "spherical shell" with uniform thickness and density.

Question: Show that, for an object at any point inside the "spherical shell", the resutant gravitational force is zero.

回答 (3)

2009-12-18 10:30 pm
✔ 最佳答案
Let the radius of the hollow be 1,
the mass of the object be 1,
the object A be located at (0,0,a), |a|<1,
the area density of the planet be 1.

Let an area element P(1, θ, φ) (spherical coordinate) locate on the spherical, then the gravitation force acts on the object equals
-Gsinφ dθdφ (sinφcosθ, sinφsinθ, cosφ-a)/(a+1-2acosφ)^1.5,
θ=-π~π, φ=0~π.

To show the resutant force is 0, it suffices to show that
∫[0,π] (cosφ-a)sinφ/(a+1-2acosφ)^1.5 dφ = 0.

Set u= a+1-2acosφ, then the integral equals
1/(2a)∫[1-a,1+a] (1-a-u)/u du= 0


2009-12-18 14:32:39 補充:
the symbol of square is gone?
-Gsinφ dθdφ (sinφcosθ, sinφsinθ, cosφ-a)/(a²+1-2acosφ)^1.5, θ=-π~π, φ=0~π.
∫[0,π] (cosφ-a)sinφ/(a²+1-2acosφ)^1.5 dφ ( u²= a²+1-2acosφ)
=1/(2a²)∫[1-a,1+a] (1-a²-u²)/u² du= 0

2009-12-18 14:35:02 補充:
the symbol of square is gone! ???
參考: Me
2009-12-22 3:55 am
呢到太強了~原來知識都有咁多高人~~~~~~
2009-12-18 10:07 pm
This is simple. You can refer to Physics Beyond 2000.

2009-12-18 14:53:05 補充:
高手... 在下佩服...

用spherical coordinate果然比cartesian快捷方便。


收錄日期: 2021-04-19 20:59:40
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091217000051KK00389

檢視 Wayback Machine 備份