Polynomial functions

2009-12-17 7:39 am
For each polynomial function, one zero is given. Find all others.

1) f(x)=x^3-7x^2+17x-15 ; 2-i

2) f(x)=x^4+10x^3+27x^2+10x+26 ; i

回答 (1)

2009-12-17 7:58 am
✔ 最佳答案

(1) One zero is 2 - i, the other zero is 2 + i
(x - 2 + i)(x - 2 - i) = (x - 2)^2 + 1 = x^2 - 4x + 5
Using long division, (x^3 - 7x^2 + 17x - 15)/(x^2 - 4x + 5) = (x - 3)
The 3 zero's are 3, 2 + i and 2 - i
(2) One zero is i, another zero is -i
(x - i)(x + i) = x^2 + 1
Using long division (x^4+10x^3+27x^2+10x+26)/(x^2 + 1) = x^2 + 10x + 26
x^2 + 10x + 26 = 0 => x = [-10 +/- √(100 - 104)]/2 = -5 +/- i
The 4 zero's are i, -i, -5 + i and -5 - i


收錄日期: 2021-04-23 23:22:40
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091216000051KK01784

檢視 Wayback Machine 備份