兩題積分求值

2009-12-15 7:19 am
1. 求 sin(x^2)/x^2的積分,積分範圍為所有實數(R)
Note: 不是 (sinx /x)^2的積分
2. 求 sin(mx)/(x^2+x+1)的積分,積分範圍為R

回答 (3)

2009-12-24 11:44 pm
✔ 最佳答案
Q1:請參考http://tw.knowledge.yahoo.com/question/question?qid=1009121310179
Q2: (設m>=0)
∫[-∞~∞] sin(mx)/(x^2+x+1) dx (配方,平移)
=∫[-∞~∞] sin[m(x- 1/2)] /(x^2 + w^2) dx ( w^2 = 3/4, w>0)
=∫[-∞,∞] [sin(mx)cos(m/2)-cos(mx)sin(m/2)]/(x^2+w^2) dx
= - sin(m/2)∫[-∞~∞] cos(mx)/(x^2+w^2) dx (奇函數的積分=0)
= - sin(m/2)∫[-∞~∞] exp(imx)/(x^2+w^2) dx 的實數部分
(counter integral 上半平面)
= - sin(m/2)*2πi*[Residue of exp(imx)/(x^2+w^2) at x=wi ] 取實數
= - sin(m/2)*2πi* exp(-mw)/(2wi) 取實數
= - 2πsin(m/2) exp(-√3 m/2) /√3
註:
若m<0, 則求 - sin(m/2)∫[-∞~∞] exp(-imx)/(x^2+w^2) dx 的實部
得 - 2πsin(m/2) exp(√3 m/2) /√3
故Q2 Ans= - 2πsin(m/2) exp(-√3 |m|/2) /√3
2009-12-22 6:37 pm
麻煩寫下一點過程,感恩!
2009-12-17 9:38 am
1. Sqrt( 2 pi )

2. - (2 pi / Sqrt(3)) Exp( - |m| Sqrt(3)/2 ) sin( m / 2 )

The first one is by changing complex coordinate and closing a contour. The second is by residue theorem.


收錄日期: 2021-04-30 14:07:39
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091214000051KK01969

檢視 Wayback Machine 備份