點計以下Formulas? (F.2數學)

2009-12-11 3:50 am
要step。
Simplify the following.
1) (4a/2a^2-3a)+(7a/3-2a)
2) [8x+5y/(x-2y)^2]-(8/x-2y)

In the each of the following, make the letter in brackets the subject of the formula.
3) P=2(ab+bc+ca) [b]
4) S=n/2 [2a+d(n-1)] [d]

5) The total surface area of a right circular cone is given by the formula
S=兀r(r+L), where r is the radius of the base circle and L is the slant height of the cone.

a) Make L the subject of the formula.
b) (i) If S = 314, r = 5 and L = 15,find the value of 兀.
(ii) If S = 264, r = 7 and 兀 = 22/7,find the value of L.

回答 (1)

2009-12-11 6:27 am
✔ 最佳答案
(1) 4a / (2a^2 - 3a) + 7a / (3 - 2a)
= 4a / [a(2a - 3)] - 7a / (2a - 3)
= (4 - 7a)/(2a - 3)
(2) (8x + 5y) / (x - 2y)^2 - 8 / (x - 2y)
= (8x + 5y) / (x - 2y)^2 - 8(x - 2y) / (x - 2y)^2
= (8x + 5y - 8x + 16y) / (x - 2y)^2
= 21y / (x - 2y)^2
(3) P = 2(ab + bc + ca)
P/2 = b(a + c) + ca
(P - 2ca)/2 = b(a + c)
b = (P - 2ca)/[2(a + c)]
(4) S = (n/2)[2a + d(n - 1)]
2S/n = 2a + d(n - 1)
2S/n - 2a = d(n - 1)
(2S - 2an)/n = d(n - 1)
d = 2(S - an) / [n(n - 1)]
(5)(a) S = πr(r + L)
S/πr = r + L
L = S/πr - r = (S - πr^2)/πr
(b)(i) 314 = π(5)(5 + 15)
π = 314/5/20 = 3.14
(ii) L = [264 - (22/7)(7^2)]/[(22/7)(7)]
L = (264 - 154)/22
L = 110/22 = 5


收錄日期: 2021-04-19 20:58:26
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091210000051KK01459

檢視 Wayback Machine 備份