Definition of Limit

2009-12-10 4:39 am
As follows:


圖片參考:http://imgcld.yimg.com/8/n/HA00266150/o/700912090144513873383850.jpg
更新1:

我一開始由|x - c| < ε3, |f(x) - L| < δ/2 及 |x - c| < ε4, |g(x) - M| < δ/2 做起有冇問題,好似http://hk.knowledge.yahoo.com/question/question?qid=7009091700043咁

回答 (1)

2009-12-10 5:10 am
✔ 最佳答案
By the definition of limit, we have:

For a sufficiently small positive values ε1 and ε2, we can say that:

When |x - c| < ε1, |f(x) - L| < δ

AND

When |x - c| < ε2, |g(x) - M| < δ

where δ is also a sufficiently small positive value.

Now, for f(x) - g(x), we can find ε3 < ε1 and ε4 < ε2 such that:

When |x - c| < ε3, |f(x) - L| < δ/2

AND

When |x - c| < ε4, |g(x) - M| < δ/2

We now have, when |x - c| < min(ε3, ε4):

|[f(x) - L] - [g(x) - M]| <= |f(x) - L| + |g(x) - M|

|[f(x) - g(x)] - (L - M)| <= δ

Hence lim (x → c) [f(x) - g(x)] = L - M

2009-12-10 20:58:19 補充:
沒問題, 因為 ε1, ε2, ε3 和 ε4 都只說明是 very small, 並沒有一個 definite 的 value.
參考: Myself


收錄日期: 2021-04-22 00:33:50
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091209000051KK01445

檢視 Wayback Machine 備份