✔ 最佳答案
1.
∠SRQ = ∠P擔 = 180゚ (同旁內角, PQ 平衡 SR)
∠SRQ = 180゚ - 76゚ = 104゚
∠SRP = ∠PRS (菱形性質)
∠SRP = 104゚ /2 = 52゚
∠SRT = ∠TRP (已知)
∠SRT = 52゚ /2 = 26゚
∠S = ∠Q = 76゚ (菱形性質)
在 △STR中, ∠PTR = ∠S + ∠SRT (△外角)
= 76゚ + 26゚ = 102゚
2.
∠BAD = 180゚ - 132゚ = 48゚ (同旁內角, AB 平衡 DC)
∴ ∠BAK = ∠KAD (菱形性質)
∠BAK = 48゚ /2 = 24゚
AB = AK (已知)
∠ABK = ∠AKB (等腰△底角)
∠BAK + ∠ABK + ∠AKB = 180゚ (△內角和)
∠AKB = [180゚ - 24゚]/2 = 78゚
∠EKC = ∠AKB = 78゚ (對頂角)
∠ACE = ∠BAK = 24゚ (內錯角, AB 平衡 DC)
∠ACE + ∠EKC + ∠BEC = 180゚ (△內角和)
∠BEC = 180゚ - 24゚ - 78゚ = 78゚
3.
∠EBC + ∠BCF = 180゚ (同旁內角, BE 平衡 CF)
∠EBC = 180゚ - 110゚ = 70゚
∠ABC = 90゚ (正方形性質)
∠ABE = ∠ABC + ∠EBC = 90゚ + 70゚ = 160゚
AB = BC (正方形性質)
BC =BE (菱形性質)
∴ AB = BE
∠BAE = ∠BEA (等腰△底角)
∠BAE + ∠BEA + ∠ABE = 180゚ (△內角和)
∠BAE = [180゚ - 160゚]/2 = 10゚
4.
∠PQR = 45゚ (正方形性質) 或
(正方形對角線與每一條邊夾角成 45゚ )
自己做