sin a + sin b + sin c ???

2009-12-04 8:10 pm
(a) (i) Prove that x^2 + y^2 + z^2 >= xy + yz + zx for any real numbers x, y, z


Let a, b, c (measured in radians) be the interior angles of a triangle
(ii) By using (a)(i), prove that 1/a^2 + 1/b^2 + 1/c^2 >= 27/(pi^2)


(b) By using AM >= GM, prove that sin a + sin b + sin c <= 3 root(3) / 2
[Hint: cos[(a-b)/2] <= 1



This is a Pure Maths question. I don't know how to do part (b). Please help~

回答 (1)

2009-12-05 12:45 am
✔ 最佳答案
sinA + sinB = 2sin[(A+B)/2]cos[(A-B)/2] ≦ 2sin[(A+B)/2]
similarly
sinC + sinD ≦ 2sin[(C+D)/2]
sinA + sinB + sinC + sinD ≦ 2sin[(A+B)/2] + 2sin[(C+D)/2]
2sin[(A+B)/2] + 2sin[(C+D)/2] = 4sin[(A+B+C+D)/4]cos[A+B-C-D)/4] ≦ 4sin[(A+B+C+D)/4]
∴ sinA + sinB + sinC + sinD ≦ 4sin[(A+B+C+D)/4]
let D = (A+B+C)/3
sinA + sinB + sinC + sinD = sinA + sinB + sinC + sin[(A+B+C)/3] ≦
4sin[(A+B+C+((A+B+C)/3)/4] = 4sin[(A+B+C)/3]
∴ sinA + sinB + sinC ≦ 3sin[(A+B+C)/3]
= 3sin[(pi)/3] = 3sqrt(3)/2

2009-12-04 21:14:47 補充:
http://www.enotes.com/math/q-and-a/by-considering-arithmetic-mean-geometric-mean-119089

我晤識用AM>=GM。

2009-12-05 11:18:20 補充:
sinA + sinB + sinC = 4(cosA/2)(cosB/2)(cosC/2)
4(cosA/2)(cosB/2)(cosC/2) ≦ 4{(1/3)[(cosA/2) + (cosB/2) + (cosC/2)]}^3

2009-12-05 11:18:25 補充:
when A/2 = B/2 = C/2 ,
4{(1/3)[(cosA/2) + (cosB/2) + (cosC/2)]}^3 attains max value, and GM = AM
∴ 4(cosA/2)(cosB/2)(cosC/2) ≦ 4{[cos(pi)/6 + (cos(pi)/6 + (cos(pi)/6]/3}^3
= 4(sqrt(3)/2)^3 = 3sqrt3/2

節錄某網站 neela君


收錄日期: 2021-04-13 16:59:22
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091204000051KK00418

檢視 Wayback Machine 備份