F.4 m2 --- trigonometry

2009-12-03 7:04 am
It is given that sinθ + cosθ = -1/2, where (3π)/2 < θ < 2π

(a) Find the value of sinθ - cosθ

(b) Hence, find the value of sec(π + θ)

回答 (1)

2009-12-03 8:42 am
✔ 最佳答案
a) Find the value of sinθ - cosθ
(sinθ + cosθ)^2 = (-1/2)^2
1 + 2sinθcosθ = 1/4
sin2θ = - 3/4
and
(sinθ - cosθ)^2
= 1 - sin2θ
= 1+3/4 = 7/4
sosinθ - cosθ = -√7 /2 or √7 /2 (rejected since sinθ is - ,cosθ is + for
(3π) / 2 < θ < 2π )
b)Hence, find the value of sec(π + θ)
sec(π + θ) = - 1 / cos θ
and
sinθ + cosθ = -1/2...(1)
sinθ - cosθ = -√7 /2...(2)
(1)-(2) :
2cosθ = -1/2 + √7 /2
cosθ = (√7 - 1) / 4
so
sec(π + θ) = - 1 / cos θ = - 1 / [(√7 - 1)/4]

= 4 / (1 - √7)

= 4(1 + √7) / - 6

= - 2(1 + √7)/3


收錄日期: 2021-04-13 16:57:42
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091202000051KK03618

檢視 Wayback Machine 備份