How do you solve the side of the triangle?

2009-11-25 11:53 pm
A right triangle ABC, and its hypotenuse is 39. The slope is 12/5. How do you solve for the opposite side - BC? Thanks in advance.
更新1:

thanks all.

回答 (3)

2009-11-26 12:05 am
✔ 最佳答案
If you are familiar with the 5 - 12 - 13 right triangle, then you know that this triangle is a multiple of it, since 3 * 13 = 39. This makes the other 2 sides 15 and 36.
If you are not familiar with that concept, then the 2 sides are in a ratio of 12 : 5, which means there exists some number x such that 12x is 1 side and 5x is the other. Using the Pythagorean Theorem,

(5x)² + (12x)² = 39²
25x² + 144x² = 39²
169x² = 39²
13 * 13 * x² = 3 * 13 * 3 * 13
x² = 9
x = 3, etc.

Of course, you can always pick up a calculator when you get to the point
169x² = 39²

Since you haven't been specific about the sides, I can't tell you which value, 15 or 36, is the answer to your question.
2009-11-26 12:05 am
If you are trying to work this without trig, you just set up an equality. If you turn the slope into a similar triangle, then you get that the hypotenuse is sqrt(12^2+5^2). So therefore you have BC / 39 = 12 / sqrt(12^2+5^2) and then you just solve for BC by multiplying the left side by 39.

If you want to use trig, then the tan(theta) = 12/5, so theta=arctan(12/5). Then 39*sin(theta)=BC.
2009-11-26 12:04 am
In Maths The Pythagorean theorem states

a^2 + b^2 = c^2

where c^2 is Hypotenuse
A^2 and B^2 are the length of other two sides.

If C^2 is given Then the
C^2- A^2=B^2
or
C^2-B^2=A^2


收錄日期: 2021-05-01 00:46:44
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091125155326AAWPCyy

檢視 Wayback Machine 備份