✔ 最佳答案
設(let) arctan n = θ
then, tan θ = n
tan (π - θ) = 1/tan θ
tan (π - θ) = 1/n
arctan (1/n) = π - θ
arctan (1/n) = π - arctan n
左式 (L.H.S.)
= arctan n - arctan (1/n)
= arctan n - (π - arctan n)
= arctan n - π + arctan n
= 2arctan n - π
= 右式 (R.H.S.)
2009-11-21 22:50:52 補充:
應是:
左式 (L.H.S.)
= arctan n - arctan (1/n)
= arctan n - (π/2 - arctan n)
= arctan n - π/2 + arctan n
= 2arctan n - π/2
= 右式 (R.H.S.)
2009-11-21 22:51:24 補充:
應是:
左式 (L.H.S.)
= arctan n - arctan (1/n)
= arctan n - (π/2 - arctan n)
= arctan n - π/2 + arctan n
= 2arctan n - π/2
= 右式 (R.H.S.)
2009-11-21 22:54:27 補充:
因為:
tan (π/2 - θ) = 1/tan θ
tan (π/2 - θ) = 1/n
arctan (1/n) = π/2 - θ
arctan (1/n) = π/2 - arctan n
2009-11-21 22:54:42 補充:
因為:
tan (π/2 - θ) = 1/tan θ
tan (π/2 - θ) = 1/n
arctan (1/n) = π/2 - θ
arctan (1/n) = π/2 - arctan n