有關tan 既問題

2009-11-20 9:53 pm
arctan n - arctan (1/n)點寫成2arctan n - pi/2?????????

更新1:

除左老爺子''既ANS,有冇人可以試下用tan(A-B)既方法?

回答 (3)

2009-11-20 10:19 pm
✔ 最佳答案
設(let) arctan n = θ
then, tan θ = n

tan (π - θ) = 1/tan θ
tan (π - θ) = 1/n
arctan (1/n) = π - θ
arctan (1/n) = π - arctan n

左式 (L.H.S.)
= arctan n - arctan (1/n)
= arctan n - (π - arctan n)
= arctan n - π + arctan n
= 2arctan n - π
= 右式 (R.H.S.)

2009-11-21 22:50:52 補充:
應是:
左式 (L.H.S.)
= arctan n - arctan (1/n)
= arctan n - (π/2 - arctan n)
= arctan n - π/2 + arctan n
= 2arctan n - π/2
= 右式 (R.H.S.)

2009-11-21 22:51:24 補充:
應是:
左式 (L.H.S.)
= arctan n - arctan (1/n)
= arctan n - (π/2 - arctan n)
= arctan n - π/2 + arctan n
= 2arctan n - π/2
= 右式 (R.H.S.)

2009-11-21 22:54:27 補充:
因為:
tan (π/2 - θ) = 1/tan θ
tan (π/2 - θ) = 1/n
arctan (1/n) = π/2 - θ
arctan (1/n) = π/2 - arctan n

2009-11-21 22:54:42 補充:
因為:
tan (π/2 - θ) = 1/tan θ
tan (π/2 - θ) = 1/n
arctan (1/n) = π/2 - θ
arctan (1/n) = π/2 - arctan n
2009-11-21 3:34 am
如果n是負,似乎等式不對
2009-11-20 10:34 pm
老爺子大人 :

應是tan (π/2 - θ) = 1/tan θ吧。

小小筆誤,無傷大雅。


收錄日期: 2021-04-21 22:04:34
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091120000051KK00492

檢視 Wayback Machine 備份