Max and Min value of quadratic

2009-11-14 10:42 pm
Find the maximum or minimum value of the quadratic function and the corresponding
value of x by the algebraic method.

1) y=x^2 -3x-1

2) y=4x^2 -12x+3

回答 (2)

2009-11-14 10:50 pm
✔ 最佳答案
We shall use the method of completing square.


1. y = x^2 - 3x - 1

y = [x^2 - 2(3/2)x + (3/2)^2] - (3/2)^2 - 1

y = (x - 3/2)^2 - 13/4

Minimum of y is obtained when x = 3/2, and the value is -13/4


2. y = 4x^2 - 12x + 3

y = 4(x^2 - 3x) + 3

y = 4[x^2 - 2(3/2)x + (3/2)^2] - 4(3/2)^2 + 3

y = 4(x - 3/2)^2 - 6

Minimum of y is obtained when x = 3/2, and the value is -6.
參考: Physics king
2009-11-14 10:53 pm
1)
y
= x^2 - 3x - 1
= x^2 - (2)(3/2)x +(3/2)^2 - (3/2)^2 - 1
= (x - 3/2)^2 - (3/2)^2 - 1
= (x - 3/2)^2 - 13/4

Minimum value of y = -13/4 when x = 3/2

2)
y
= 4x^2 - 12x + 3
= 4(x^2 - 3x) + 3
= 4(x^2 -(2)(3/2)x + (3/2)^2) - (4)(3/2)^2 + 3
= 4(x - 3/2)^2 - 6

Minimum value of y = -6 when x = 3/2


收錄日期: 2021-04-19 20:40:31
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091114000051KK00725

檢視 Wayback Machine 備份