請教微積分多項式實數根的解法

2009-11-14 7:41 am
1.~~~求多項式實數根
6X^3-11X^2-19X-6

2~~~求X的值,使點(1,0)和(X,4)之間的距離為5

3~~~求X和Y的截距
y=x^2+x-2

要有詳細算法喔...謝謝

回答 (1)

2009-11-14 5:53 pm
✔ 最佳答案
1. 設f(x) = 6x^3 - 11x^2 - 19x - 6

因為f(3) = 6(3)^3 - 11(3)^2 - 19(3) - 6 = 0

根據因式定理,(x - 3)是f(x)的因子

6x^3 - 11x^2 - 19x - 6

= (x - 3)(6x^2 + 7x + 2)

= (x - 3)(2x + 1)(3x + 2)

所以,6x^3 - 11x^2 - 19x - 6 = 0

(x - 3)(2x + 1)(3x + 2) = 0

x = 3, -1/2 或 -2/3


2. sqrt[(x - 1)^2 + (4 - 0)^2] = 5

(x^2 - 2x + 1) + 16 = 25

x^2 - 2x - 8 = 0

(x - 4)(x + 2) = 0

x = 4 或 -2


3. y = x^2 + x - 2

y截距,代x = 0

y = -2

x截距,代y = 0

x^2 + x - 2 = 0

(x + 2)(x - 1) = 0

x = 1 或 -2
參考: Physics king


收錄日期: 2021-04-19 20:38:32
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091113000010KK08874

檢視 Wayback Machine 備份