數學難題 快快快!!..

2009-11-12 5:58 am
1∕1 + 1∕1+2 + 1∕1+2+3 + 1∕1+2+3+4 + 1∕1+2+3+4+5 + ... 1∕1+2+3+...+100 = ?

回答 (3)

2009-11-12 6:12 am
✔ 最佳答案
1/1 + 1/(1+2) + 1/(1+2+3) + 1/(1+2+3+4) +...+ 1/(1+2+3+...+100)

= 1/[1*(1+1)/2] + 1/[2(1+2)/2] + 1/[3(1+3)/2] + 1/[4(1+4)/2 +...+ 1/[100(1+100)/2]

= 2/(1*2) + 2/(2*3) + 2/(3*4) + 2/(4*5) +...+ 2/(100*101)

= 2(1 - 1/2) + 2(1/2 - 1/3) + 2(1/3 - 1/4) + 2(1/4 - 1/5) + ... + 2(1/100 - 1/101)

= 2(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - ... - 1/100 + 1/100 - 1/101)

= 2(1 - 1/101)

= 2(100/101)

= 200/101

公式 : 1+2+3+...+N= N(1+N)/2

2009-11-13 5:30 am
anggrek_ungguindah,如果你不懂就不要答吧…
2009-11-12 6:04 am
1/1+1/1+2+1/1+2+3+1/1+2+3+4+1/1+2+3+4+5+...1/1+2+3+...+100=i don't
know?hehe~~...


收錄日期: 2021-04-21 22:07:35
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091111000051KK01623

檢視 Wayback Machine 備份