✔ 最佳答案
1/1 + 1/(1+2) + 1/(1+2+3) + 1/(1+2+3+4) +...+ 1/(1+2+3+...+100)
= 1/[1*(1+1)/2] + 1/[2(1+2)/2] + 1/[3(1+3)/2] + 1/[4(1+4)/2 +...+ 1/[100(1+100)/2]
= 2/(1*2) + 2/(2*3) + 2/(3*4) + 2/(4*5) +...+ 2/(100*101)
= 2(1 - 1/2) + 2(1/2 - 1/3) + 2(1/3 - 1/4) + 2(1/4 - 1/5) + ... + 2(1/100 - 1/101)
= 2(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - ... - 1/100 + 1/100 - 1/101)
= 2(1 - 1/101)
= 2(100/101)
= 200/101
公式 : 1+2+3+...+N= N(1+N)/2