✔ 最佳答案
6)
f(x)=4x^2 + 4kx +6k -9 >= 0
So f(x)=0 have no real roots
△ = (4k)^2 - 4(4)(6k-9) < =0
16k^2 - 96k + 144 < =0
k^2 - 6k + 9 < =0
(k - 3)^2 < =0
k = 3
12a)
X+Y = (X+Y)^2 - 2XY = 2m+4 = 2(m+2)
So :
(2m+4)^2 - 2XY = 2m+4
2XY = (2m+4)^2 - (2m+4)
XY = (1/2)(2m+4)(2m+4 -1)
XY = (m+2)(2m+3)
The required equation is x^2 - (X+Y)x + XY = 0
i.e. x^2 - 2(m+2)x + (m+2)(2m+3) = 0
b)
Since X ,Y are real numbers :
△ =[2(m+2)]^2 - 4(m+2)(2m+3) >= 0
4(m^2 + 4m + 4) - 4(m+2)(2m+3) >= 0
m^2 + 4m + 4 - (2m^2 + 4m + 3m + 6) >= 0
- m^2 - 3m - 2 >= 0
m^2 + 3m + 2 <= 0
(m+1)(m+2) <= 0
- 1 <= m <= - 2
2009-10-31 02:05:06 補充:
The second line should be :
So f(x)=0 have no real roots or have double roots