解指數定律方程一問

2009-10-29 5:14 am
請計算以下題目,要有步驟
3^(x+1)+3^(x)-36=0

5^(x+1)-5x-100=0

9^(x)+9^(x-1)-10=0

回答 (2)

2009-10-29 5:25 am
✔ 最佳答案
3^(x+1)+3^(x)-36=0

3(3^x) + 3^x = 36

(3+1)(3^x) = 36

3^x = 9

3^x = 3^2

x = 2

5^(x+1)-5x-100=0

5(5^x) - 5^x = 100

(5-1)(5^x) = 100

5^x = 25

5^x = 5^2

x = 2


9^(x)+9^(x-1)-10=0

9[9^(x-1)] + 9^(x-1) = 10

(9+1)(9^(x-1)) = 10

9^(x-1) = 1

9^(x-1) = 9^0

x-1 = 0

x = 1




2009-10-31 3:06 am
3^(x+1)+3^(x)-36=0

3(3^x) + 3^x = 36

(3+1)(3^x) = 36

3^x = 9

3^x = 3^2

x = 2

5^(x+1)-5x-100=0

5(5^x) - 5^x = 100

(5-1)(5^x) = 100

5^x = 25

5^x = 5^2

x = 2


9^(x)+9^(x-1)-10=0

9[9^(x-1)] + 9^(x-1) = 10

(9+1)(9^(x-1)) = 10

9^(x-1) = 1

9^(x-1) = 9^0

x-1 = 0

x = 1
參考: me^^


收錄日期: 2021-04-21 22:06:01
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091028000051KK01308

檢視 Wayback Machine 備份