Harder Partial Fractions

2009-10-20 4:53 am
It is known that for any positive integer n,

(n+1)!/[x(x+1)(x+2)...(x+n+1)] = summation(r=0->n+1) [(-1)^r C(n+1,r)/(x+r)] ,
where C(n,r) is the binomial coefficient.

Show that

summation(r=0->n) [(-1)^r C(n,r)/(n+r)(n+r+1)] = 1/[(2n+1) C(2n,n+1) ]

回答 (2)

2009-10-20 6:56 am
✔ 最佳答案
Firstly 1 / (x + r)(x + r + 1) = 1 / (x + r) - 1 / (x + r + 1) : you should be able to prove this.
Σ(r = 0 - >n) [( - 1)^r C(n,r)/(x + r)(x + r + 1)]
= Σ(r = 0 - >n) [( - 1)^r C(n,r)][1/(x + r) - 1/(x + r + 1)]
= Σ(r = 0 - >n) [( - 1)^r C(n,r)]/(x + r) - Σ(r = 0 - >n) [( - 1)^r C(n,r)]/(x + r + 1)] ... (1)
For the second sum, let k = r + 1, then it becomes
Σ(k = 1 - >n + 1) [( - 1)^(k - 1) C(n,k - 1)]/(x + k)], renaming k back to r,
= Σ(r = 1 - >n + 1) [( - 1)^(r - 1) C(n,r - 1)]/(x + r)]
(1) becomes
Σ(r = 0 - >n) [( - 1)^r C(n,r)]/(x + r) - Σ(r = 1 - >n + 1) [( - 1)^(r - 1) C(n,r - 1)]/(x + r)]
= Σ(r = 1 - >n) [( - 1)^r C(n,r)]/(x + r) - Σ(r = 1 - >n) [( - 1)^(r - 1) C(n,r - 1)]/(x + r)] + C(n,0)/x - ( - 1)^nC(n,n)/(x + n + 1)
= Σ(r = 1 - >n) [( - 1)^r/(x + r)][C(n,r) + C(n,r - 1)] + 1/x + ( - 1)^(n + 1)/(x + n + 1)
Note that C(n,r) + C(n,r - 1) = C(n + 1,r)
= Σ(r = 1 - >n) [( - 1)^r/(x + r)][C(n + 1,r)] + 1/x + ( - 1)^(n + 1)/(x + n + 1)
= Σ(r = 0 - >n + 1) [( - 1)^r/(x + r)][C(n + 1,r)]
= (n + 1)!/[x(x + 1)(x + 2)...(x + n + 1)]
Put x = n, the sum becomes
(n + 1)!/[n(n + 1)(n + 2)...(n + n + 1)]
= (n + 1)!(n - 1)! / (2n + 1)!
= (n + 1)!(n - 1)! / [(2n)!(2n + 1)]
= 1 / [(2n + 1)C(2n,n + 1)]
2009-10-21 1:17 am


收錄日期: 2021-04-23 23:18:49
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091019000051KK01409

檢視 Wayback Machine 備份