✔ 最佳答案
arc sin2x = arc sin(sqrt3)x + arc sinx
sin(arc sin2x) = sin(arc sin(sqrt3)x + arc sinx)
2x = sin(sin(sqrt3)x)cos(arc sinx) + cos(sin(sqrt3)x)sin(arc sinx)
2x = (sqrt3)xsqrt(1 - x^2) + xsqrt(1 - 3x^2)
x(sqrt(3 - 3x^2) + sqrt(1 - 3x^2) - 2) = 0
x = 0 or sqrt(3 - 3x^2) + sqrt(1 - 3x^2) - 2 = 0
sqrt(3 - 3x^2) = 2 - sqrt(1 - 3x^2)
3 - 3x^2 = 4 - 4sqrt(1 - 3x^2) + (1 - 3x^2)
sqrt(1 - 3x^2) = 1/2
1 - 3x^2 = 1/4
x^2 = 1/4
x = +- 1/2
So, x = 0 or +- 1/2
2009-10-18 22:07:30 補充:
Just bear in mind
sin(a + b) = sina cosb + cosa sinb