三角比 F.4

2009-10-19 1:59 am
1-tan^2 X
_______ +sin^2 X =??????
1+tan^2 X
更新1:

= (cos^2 x - sin^2 x) / (sin^2 x + cos^2 x) + sin^2 x 點變 = (cos^2 x - sin^2 x) / 1 + sin^2 x

更新2:

= (cos^2 x - sin^2 x) / 1 + sin^2 x 點變 = cos^2 x

回答 (2)

2009-10-19 2:09 am
✔ 最佳答案
(1 - tan^2 x) / (1 + tan^2 x) + sin^2 x

= [1 - (sin^2 x)/cos^2 x)] / [1 + (sin^2 x)/(cos^2 x)] + sin^2 x

= [(cos^2 x - sin^2 x)/cos^2 x] / [(sin^2 x + cos^2 x) / cos^2 x] + sin^2 x

= (cos^2 x - sin^2 x) / (sin^2 x + cos^2 x) + sin^2 x

= (cos^2 x - sin^2 x) / 1 + sin^2 x

= cos^2 x

2009-10-18 18:31:08 補充:
= (cos^2 x - sin^2 x) / (sin^2 x + cos^2 x) + sin^2 x 點變

= (cos^2 x - sin^2 x) / 1 + sin^2 x

因為 sin^2 x + cos^2 x = 1

注意 (cos^2 x - sin^2 x) / 1 + sin^2 x 不要理解成

(cos^2 x - sin^2 x) / (1 + sin^2 x )

2009-10-18 18:32:13 補充:
= (cos^2 x - sin^2 x) / 1 + sin^2 x

= cos^2 x - sin^2 x + sin^2 x

= cos^2 x
2009-10-21 2:22 am


收錄日期: 2021-04-21 22:03:31
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091018000051KK01405

檢視 Wayback Machine 備份