代數補項及拆項法問題

2009-10-18 9:53 pm
請問如何分解下列因式及列出計算過程 :
1. x^2; - 4xy + 4y^2; - 6x +12y + 8

2. (x +y )(x +y +2xy)+(xy + 1)(xy - 1)

3. (x^2 + 3x - 1)(x^2 + 3x - 2)- 6

回答 (2)

2009-10-18 11:02 pm
✔ 最佳答案
1. x^2 - 4xy + 4y^2- 6x +12y + 8

= (x^2 - 4xy + 4y^2) - (6x - 12y) + 8

= (x - 2y)^2 - 6(x - 2y) + 8

= (x - 2y)^2 + (- 2 + - 4)(x - 2y) + (-2)(-4)

=(x - 2y - 2)(x - 2y - 4)


2. (x +y )(x +y +2xy)+(xy + 1)(xy - 1)

= (x + y)^2 + 2xy(x + y) + (xy + 1)(xy - 1)

= (x + y)^2 + [(xy + 1) + (xy - 1)] (x + y) + (xy + 1)(xy - 1)

= (x + y + xy + 1)(x + y + xy - 1)


3. (x^2 + 3x - 1)(x^2 + 3x - 2)- 6

設 (x^2 + 3x - 1) = y :

原式 = y(y - 1) - 6

= y^2 - y - 6

= y^2 + (2 + -3)y + (2)(- 3)

= (y + 2)(y - 3)

原式 = (x^2 + 3x - 1 + 2)(x^2 + 3x - 1 - 3)

=(x^2 + 3x + 1)(x^2 + 3x - 4)








2009-10-29 5:38 am
1. x^2 - 4xy + 4y^2- 6x +12y + 8

= (x^2 - 4xy + 4y^2) - (6x - 12y) + 8

= (x - 2y)^2 - 6(x - 2y) + 8

= (x - 2y)^2 + (- 2 + - 4)(x - 2y) + (-2)(-4)

=(x - 2y - 2)(x - 2y - 4)


2. (x +y )(x +y +2xy)+(xy + 1)(xy - 1)

= (x + y)^2 + 2xy(x + y) + (xy + 1)(xy - 1)

= (x + y)^2 + [(xy + 1) + (xy - 1)] (x + y) + (xy + 1)(xy - 1)

= (x + y + xy + 1)(x + y + xy - 1)


3. (x^2 + 3x - 1)(x^2 + 3x - 2)- 6

設 (x^2 + 3x - 1) = y :

原式 = y(y - 1) - 6

= y^2 - y - 6

= y^2 + (2 + -3)y + (2)(- 3)

= (y + 2)(y - 3)

原式 = (x^2 + 3x - 1 + 2)(x^2 + 3x - 1 - 3)

=(x^2 + 3x + 1)(x^2 + 3x - 4)


收錄日期: 2021-04-21 22:03:51
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091018000051KK00834

檢視 Wayback Machine 備份