F.4 m2 binomial theorem

2009-10-18 7:54 pm
(a)
If m is a positive integer, prove that (1-3x)^m = 1 - 3mx + (9/2)m(m-1)(x^2) + terms involving higher powers of x.


(b)
It is given that the coefficients of x^2 in the expansion of (1-3x)^m [1+2x+(x^2)] is 61. Find the value of m.

回答 (2)

2009-10-18 8:15 pm
✔ 最佳答案
(a) (1 - 3x)m = mC0 x 1m x (-3x)0 + mC1 x 1m-1 x (-3x)1 + mC2 x 1m-2 x (-3x)2 + ...

= 1 - 3mx + mC2 (9x2) + ...

= 1 - 3mx + 9m(m - 1)x2/2 + ...

(b) (1 - 3x)m (1 + 2x + x2) = [1 - 3mx + 9m(m - 1)x/2 + ...] (1 + 2x + x2)

Coefficient of x2 = 1 - 6m + 9m(m - 1)/2

So,

1 - 6m + 9m(m - 1)/2 = 61
2 - 12m + 9m2 - 9m = 122
9m2 - 21m - 120 = 0
3m2 - 7m - 40 = 0
(3m + 8)(m - 5) = 0
m = -8/3 (rejected) or 5

2009-10-18 15:11:39 補充:
有的. 讀微積分. 相當於今日中五附加數
參考: Myself
2009-10-18 8:56 pm
(題外話)f4有開m2架咩


收錄日期: 2021-04-13 16:54:20
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091018000051KK00588

檢視 Wayback Machine 備份