About quadratic equation

2009-10-16 5:12 am
1.Given that the quadratic equation f(x) = 2x^2 - kx +12 attains its minimum value at x=5/2 .Find
a)the value of k
b)the greatest value of 4 - f(x)

2.Given 2x^2 + 6x +9 = a(x+b)^2 +c,where a,b and c are real constants
a)Find the values of a,b and c
b)Hence,write down the least value of 2x^2 + 6x +9
更新1:

For Q.2(c), Using (a),or otherwise,write down the range of possible values of 2/(2x^2 + 6x +9)

回答 (1)

2009-10-16 5:28 am
✔ 最佳答案
1.a. f(x) = 2x^2 - kx + 12

= 2(x^2 - kx/2 + (k/4)^2) - k^2/8 + 12

= 2(x - k/4)^2 + 12 - (k^2/8)

For x = 5/2, f(x) attains the minimum

This happens when (x - k/4)^2 = 0

So, 5/2 - k/4 = 0

k = 10

b. For the greatest value of 4 - f(x), f(x) is at minimum value

min f(x) = 12 - (10)^2/8 = -1/2

So, the maximum value of 4 - f(x) = 4 - (-1/2) = 9/2


2.a. 2x^2 + 6x + 9 = a(x + b)^2 + c

= a(x^2 + 2bx + b^2) + c

= ax^2 + 2abx + (ab^2 + c)

Comparing coefficients, a = 2, 2ab = 6, so, b = 6/(2 X 2) = 3/2

(2)(3/2)^2 + c = 9

c = 9/2

b. 2x^2 + 6x + 9 = 2(x + 3/2)^2 + 9/2

The minimum value of this function is 9/2.

c. As minimum value of the equation 2x^2 + 6x + 9 = 9/2

So, 2/(2x^2 + 6x + 9) attains maximum when 2x^2 + 6x + 9 = 9/2

So, 2/(2x^2 + 6x + 9) <= 2/(9/2) = 4/9

And the denominator will converge to +ve infinity as x tends to infinity, so

2/(2x^2 + 6x + 9) > 0

Therefore,

0 < 2/(2x^2 + 6x + 9) <= 4/9
參考: Physics king


收錄日期: 2021-04-19 15:59:12
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091015000051KK01307

檢視 Wayback Machine 備份