中4數40分長答thx
希望可以長細解答唔該.......^.^
已知兩條直線L1:Ax-y+3=0和L2:2x+4y+C=0
a)寫出L1及L2的斜率
bi)如果L1┴L2求A
ii)如果L1重疊L2求A及C
回答 (3)
✔ 最佳答案
a) L1 : Ax - y + 3 = 0
y = Ax + 3
L1 斜率 = A
L2 : 2x + 4y + C = 0
4y = -2x - C
y = (-1/2)x - C/4
L2 斜率 = -1/2
bi) L1┴L2 :
A * (-1/2) = - 1
A = - 1 / (-1/2)
A = 2
bii) L1重疊L2 :
Ax-y+3 = 0 = 2x+4y+C
A/2 = -1/4 = 3/C
A = -1/2 ,
C = - 12
a) Note that the slope of a straight line can be defined as (-a/b)
so,m(L1)=(-A/-1)=A and
m(L2)=(-2/4)=-1/2
b) Note that the slope of a ┴ lines = m(L1)*m(L2)=-1
so, m(L1)*m(L2)=-1
A(-1/2)=-1
A=2
c) L1 overlapped L2
i.e equation of L1=equation of L2
Ax-y+3=0
2x+4y+C=0
i.e Ax-y+3=2x+4y+C ...(*)
By consider the coefficient term of the L.H.S and the R.H.S in (*)
A=2 and C=3
參考: maths devotee
a) L1: A
L2: -1/2
bi) A(-1/2) = -1
A= 2
參考: me
收錄日期: 2021-04-21 22:08:27
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091014000051KK00908
檢視 Wayback Machine 備份