✔ 最佳答案
1.y = x + 1 / (x - 3)
y = (x^2 - 3x + 1) / (x - 3)
yx - 3y = x^2 - 3x + 1
x^2 - (3 + y)x + (1 + 3y) = 0
判別式 >=0
(3 + y)^2 - 4(1 + 3y) >= 0
y^2 + 6y + 9 - 4 - 12y >= 0
y^2 - 6y + 5 >= 0
(y - 1)(y - 5) >= 0
y >=5 或 y <= 1
當y >= 5 => (x^2 - 3x + 1) / (x - 3) >= 5
x^2 - 3x + 1 <= 5x - 15 因x - 3 < 0
x^2 - 8x + 16 <= 0
(x - 4)^2 <= 0 無可能
當y <= 1 => (x^2 - 3x + 1) / (x - 3) <= 1
x^2 - 3x + 1 >= x - 3
x^2 - 4x + 4 >= 0
(x - 2)^2 >= 0 成立
故 y <= 1
2.設x>0 y>0 且x + 2y = 3
(x/3 + x/3 + x/3 + 2y) / 4 >= 4√[(x/3)3(2y)]算幾不等式
等式成立於 x/3 = 2y = 3/4 或 x = 9/4; y = 3/8
3 / 4 >= 4√[(x/3)3(2y)]
81/256 >= 2x3y/27
2187/512 >= x3y
log2(2187/512) >= 3log2x + log2y
(1/3)log2(2187/512) >= log2x + log2y/log28
0.6892 >= log2x + log8y
log2x +log8y之最大值為0.6892 此時x = 9/4 y = 3/8
3. 6 < 2|x-1| + 3|y+1| < 18之圖形
將6 = 2 | x - 1| + 3| y + 1|化為4直線
6 = 2(x - 1) + 3(y + 1) 或2x + 3y - 5 = 0
6 = 2(x - 1) - 3(y + 1) 或2x - 3y - 11 = 0
6 = -2(x - 1) + 3(y + 1) 或-2x + 3y - 1 = 0
6 = -2(x - 1) - 3(y + 1) 或-2x - 3y - 7 = 0
形成一菱形
(0,0)在菱形內
考慮(0,0)並不乎合不等式6 < 2|x-1| + 3|y+1|故不等式包括菱形外面的範圍.
同理, 2|x-1| + 3|y+1| < 18是四直線形成的較大菱形以內的範圍,該四直線為
2x + 3y - 17 = 0
2x - 3y - 23 = 0
-2x + 3y - 7 = 0
-2x - 3y - 19 = 0
6 < 2|x-1| + 3|y+1| < 18是兩菱形之間的範圍.