✔ 最佳答案
1a)
x2+y2+z2+2xy+2yz+2zx
=x2+2xy+2zx+y2+2yz+z2
=x2+2(y+z)x+(y+z)2
=[x+(y+z)]2
=(x+y+z)2
1b)
(a+b+c)=3
(a+b+c)2=9
a2+b2+c2+2ab+2bc+2ca=9
21+2(ab+bc+ac)=9
2(ab+bc+ac)=-12
ab+bc+ac=6
2) 2(2x-1)2-5(2x-1)-3
=[2(2x-1)+1] [(2x-1)-3]
=(4x-1)(2x-4)
3) (x2+x)2+72-18(x2+x)
=(x2+x)2-18(x2+x) +72
=[(x2+x)-6] [(x2+x)-12]
=(x2+x-6)(x2+x-12)
4) (x2+x+2)(x2+x-8)+24
=x4+2x3-5x2-6x+8
2009-10-11 18:34:40 補充:
=(x-1)(x+2)(x^2+x-4)
2009-10-13 07:46:01 補充:
1b)21+2(ab+bc+ac)=9
2(ab+bc+ac)=9-21
2(ab+bc+ac)=-12
2009-10-13 07:55:05 補充:
2(2x-1)^2-5(2x-1)-3=[2(2x-1)+1] [(2x-1)-3] <~這裡用了十字相乘法
2009-10-13 07:57:30 補充:
x^4+2x^3-5x^2-6x+8
=(x-1)(x+2)(x^2+x-4) <~利用長除法