F.4 a.math Quadratic equation

2009-10-11 8:17 pm
If the quadratic equation ax2 + bx + c = 0 and px2 + qx + r = 0 have one root in common, prove that (br - cp)(aq - bp) = (cp - ar)2

我之前問過,ilovemadonna2009 答左...
http://hk.knowledge.yahoo.com/question/question?qid=7009101000879

但係我唔明佢有一步:
(br - cq)[qar - cpq + pcq - pbr] = r(cp - ar)2

(br - cq)(aq - bp) = (cp - ar)2
依一步何來??

或請說出其它方法...

回答 (2)

2009-10-11 8:42 pm
✔ 最佳答案
上一步 :
-q(ar - cp) (cq - br) - p(cq - br)2 = r(ar - cp)2

抽common factor -(cq - br),即(br - cq)
得(br - cq) * [q(ar - cp) + p(cq - br)]
(br - cq)[qar - cpq + pcq - pbr] = r(cp - ar)2
(br - cq)[qar - cpq + pcq - pbr] = r(cp - ar)2 加減相消
(br - cq)[qar - pbr] = r(cp - ar)2 約掉 r
(br - cq)(aq - bp) = (cp - ar)2
2009-10-15 12:30 am
If the quadratic equation ax^2+bx+c=0 and px^2+qx+r= 0 have one root in
common,prove that (br-cp)(aq-bp)=(cp-ar)^2
Sol
ax^2 + bx + c = 0 and px^2 + qx + r = 0 有一次公因數
=>消去2次式就是公因式
So
p(ax^2 + bx + c)-a( px^2 + qx + r)
=x(pb-aq)+(pc-ar)
Set x(pb-aq)+(pc-ar)=0
x=(pc-ar)/(aq-pb)
So
a[(pc-ar)/(aq-pb)]^2+b[(pc-ar)/(aq-pb)]+c=0
a(pc-ar)^2+b(pc-ar)(aq-pb)+c(aq-pb)^2=0
a(pc-ar)^2=-b(pc-ar)(aq-pb)-c(aq-pb)^2
=(aq-pb)[-b(pc-ar)-c(aq-pb)]
=(aq-pb)(-bpc+abr-acq+pbc)
=(aq-pb)(abr-acq)
=a(aq-pb)(br-cq)
So a(pc-ar)^2=a(aq-pb)(br-cq)
(br-cq)(aq-bp)=(cp-ar)^2


收錄日期: 2021-04-13 16:53:23
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091011000051KK00673

檢視 Wayback Machine 備份