(數學)不等式和極值...

2009-10-11 5:04 am
1.
Xlogx>X4/1000
這個要怎麼解???
2.
就下列小題的x範圍.求函數F(x)=2x2-4x+6
(1)x屬於R
(2)x>=2
(3)-2<=x<=0
一開始先配方完後...再來這些x的範圍是要怎麼看啊???
3.
設函數f(x)=|x2-4|-3x
求函數f(x)在-2<=x<=5的極值
有絕對值函數要怎麼處理???

4.
設x為實數,試求函數f(x)=2x2-2x+3/x2-x+1的極值
更新1:

f(x) = 2 + 1 / (x2 - x + 1) 請問2+1怎麼來的 謝謝!

回答 (1)

2009-10-11 6:57 am
✔ 最佳答案
1. xlogx > x4/1000
log(xlogx) > log(x4) - log(1000)
(logx)(logx) > 4logx - 3
(logx)2 - 4logx + 3 > 0
(logx - 3)(logx - 1) > 0
logx > 3 或 logx < 1
x > 1000 或 x < 10
2. f(x)=2x2 - 4x + 6
f(x) = 2(x - 1)2 + 4
f(x) 最小值位於x=1, 其時f(x) = 4
(1)x屬於R
f(x) 最小值為4 => f(x) >= 4
(2)x>=2
f(2) = 6
f(x) >= 6
(3) -2 <= x <= 0
f(-2) = 22
f(0) = 6
4 <= f(x) <= 22
3. f(x) = |x2 - 4| - 3x
情況一: x2 - 4 > 0
x > 2 或 x < -2 (不切題)
f(x) = x2 - 3x - 4 = (x - 3/2)2 - 25/4
範圍不包括最小值的點
f(2) = -6
f(5) = 6
情況二: x2 - 4 <= 0
-2 <= x <= 2
f(x) = -x2 + 4 - 3x = -(x + 3/2)2 + 25/4
最大值位於 x = -3/2其值為25/4
f(-2) = 6
f(2) = - 6
f(x)在-2<=x<=5的最大值為25/4最小值為-6
4. f(x) = (2x2 - 2x + 3) / (x2 - x + 1)
f(x) = 2 + 1 / (x2 - x + 1)
= 2 + 1 / [(x - 1/2)2 + 3/4]
當x趨於+/-無限大時,f(x) = 2
當x = 1/2, f(x) = 2 + 4/3 = 10/3
f(x) 的最小值為2,最大值為10/3

2009-10-10 23:58:30 補充:
直接相除:
(2x^2 - 2x + 3) / (x^2 - x + 1)
= [2(x^2 - x + 1) +1] / (x^2 - x + 1)
= 2 + [ 1/ (x2 - x + 1)]


收錄日期: 2021-04-23 23:18:12
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091010000010KK08361

檢視 Wayback Machine 備份