a-maths~~~~~~

2009-10-08 2:08 am
某直線族的方程為
(2k+3)x+(k-2)y-(5k+4)=0。
已知直線族內所有直線皆穿過定點P。
(a)求P的坐標。
(b)寫下一條穿過P,但不屬於以上直線的直線L的方程。
(c)在以下各情況中,求直線族內符合題中性質的直線方程。
(i)與直線2x+5y-1=0平行
(ii)與L成45o角

回答 (2)

2009-10-08 3:13 am
✔ 最佳答案
(c)(ii) 中的L是甚麼?

2009-10-07 19:13:46 補充:
(2k+3)x + (k-2)y - (5k+4) = 0
(3x - 2y - 4) + k(2x + y - 5) = 0

(a) P is the intersection of 3x-2y=4 and 2x+y=5.
Therefore P=(2, 1).

(b) 2x + y - 5 = 0 is the required straight.
In general, for L1+k*L2=0, L2 is NOT in the family.

(c)(i) Slope = - 2/5, passing through P

Thus the required equation is
(y-1) / (x-2) = -2/5
2(x-2) = -5(y-1)
2x + 5y - 9 = 0

(ii) What is L???


2009-10-07 22:30:49 補充:
ok...my mistake, sorry.

2009-10-07 22:38:13 補充:
Slope of the required st. line = - (2k+3) / (k-2)
Slope of L = -2

Thus
| [(2k+3)/(k-2) - 2] / [1 + 2(2k+3)/(k-2)] | = tan45 = 1
| [(2k+3) - 2(k-2)] / [(k-2) + 2(2k+3)] | = 1
| 7 / [5k+4] | = 1
5k+4=7 or 5k+4=-7
k=3/5 or k=-11/5

2009-10-07 22:38:19 補充:
Therefore the required equations are
5(3x - 2y - 4) + 3(2x + y - 5) = 0 and 5(3x - 2y - 4) - 11(2x + y - 5) = 0
3x - y - 5 = 0 and x + 3y - 5 = 0
2009-10-08 5:34 am
你看看(b)


收錄日期: 2021-04-23 20:44:34
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091007000051KK00932

檢視 Wayback Machine 備份