amaths

2009-10-04 10:40 am
我有條題目唔知點做..可唔可以搵人教下我

let a,b,c be positive unequal real number

using the results a^2 + b^2 > 2 ab ,, b^2 + c^2 > 2bc
and c^2 + a^2 > 2 ac

1) deduce that a^2 - ab + b^2 >ab
2) deduce that a^2 + b^2 + c^2 > bc + ca + ab
3) show that a^3 + b^3 > ab( a+b)

thz! =)

回答 (1)

2009-10-04 7:34 pm
✔ 最佳答案
1. By a2 + b2 > 2ab

As a and b are positive numbers,

So, ab is also a positive number.

Therefore, a2 + b2 - ab > 2ab - ab

a2 - ab + b2 > ab

2. a2 + b2 > 2ab

b2 + c2 > 2bc

c2 + a2 > 2ac

As all numbers are positive, we can simply add up the inequalities,

2(a2 + b2 + c2) > 2(bc + ca + ab)

a2 + b2 + c2 > bc + ca + ab

3. a3 + b3 = (a + b)(a2 - ab + b2)

> ab(a + b) (By part a)

參考: Physics king


收錄日期: 2021-04-19 15:27:29
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20091004000051KK02150

檢視 Wayback Machine 備份