✔ 最佳答案
Prove,by induction that, for all positive integers n,4 * 6^(n-1) + 5^n leaves a
remainder 9 when it is divided by 20.
Sol
當n=1時
4*6^(n-1)+5^n=4*6^0+5=9
So n=1時為真
設n=k時為真
則存在正整數p使得 4*6^(k-1)+5^k=20p+9
So 4*6^k+5^(k+1)
=24*6^(k-1)+5*5^k
=4*6^(k-1)+5^k+20*6^(k-1)+4*5^k=(20p+9)+20(6^(k-1)+5^(k-1))
=20p+20(6^(k-1)+5^(k-1))+9
So n=k+1時為真