F4 maths

2009-10-01 7:11 am
It is given that f(x)=2(x+m), g(x)=x+m and f(8)=6g(4).
(a) Find the value of m
(b) Hence, find the value(s) of x such that f(x) *g(x)=50

回答 (2)

2009-10-01 7:32 am
✔ 最佳答案
It is given that f(x)=2(x+m), g(x)=x+m and f(8)=6g(4).
(a) Find the value of m

f(8)=6g(4)
2(8+m)=6(4+m)
16+2m=24+6m
-8=4m
m=-2

(b) Hence, find the value(s) of x such that f(x) *g(x)=50

f(x)*g(x)=50
2[x+(-2)]*[x+(-2)]=50
2(x-2)*(x-2)=50
(x-2)^2=25
x-2=±5
x-2=5 or x-2=-5
x=7 or x=-3
參考: 自己...
2009-10-01 7:24 am
a) f(8) = 2(8 + m)
6g(4) = 6(4 + m)
2(8 + m) = 6(4 + m)
8 + m = 3(4 + m)
8 + m = 12 + 3m
m = - 2
b) f(x) *g(x)=50
2[x + (-2)] * [x + (-2)] = 50
(x - 2)^2 = 25
x - 2 = 5 or - 5
x = 7 or x = - 3


收錄日期: 2021-04-21 22:04:48
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090930000051KK01808

檢視 Wayback Machine 備份