f.4 mathz

2009-10-01 2:26 am
if a and 1/a are the roots of the equation 2x^2+(k^2-1)x+(5-k)=0, find the values of
a) k
b)a+1/a
c)(a-1/a)^2
d)a^3+1/a^3

ans::
a)3
b)-4
c)12
d)-52

how to calculate??

回答 (2)

2009-10-01 2:44 am
✔ 最佳答案


if a and 1/a are the roots of the equation 2x^2+(k^2-1)x+(5-k)=0,find the values of
a) k =?
a and 1/a are the roots of the equation 2x^2+(k^2-1)x+(5-k)=0
=>1/a and a are the roots of the equation 2(1/x)^2+(k^2-1)(1/x)+(5-k)=0
2+(k^2-1)x+(5-k)x^2=0
(5-k)x^2+(k^2-1)x+2=0
So 2/(5-k)=(k^2-1)/(k^2-1)=(5-k)/2
k=3

b)a+1/a=?
2x^2+8x+2=0
x^2+4x+1= 0
a+1/a=-4

c)(a-1/a)^2=?
(a-1/a)^2
=(a+1/a)^2-4*a*1/a
=16-
=12

d)a^3+1/a^3=?
a^3+1/a^3
=(a+1/a)^3-3(a+1/a)
=(-4)^3-3*(-4)
=-64+12
=-52


2009-10-01 3:10 am
a) Product of roots = a * 1/a = (5-k)/2

1 = (5-k)/2

k = 3


收錄日期: 2021-04-21 22:03:07
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090930000051KK01080

檢視 Wayback Machine 備份