✔ 最佳答案
1. A=x^4+6x^3-7x^2+3x+9 B=x^2+3x-2
1+3-14
----------------------------
1+3-2 ) 1+6-7+3+9
1+3-2
----------------
3-5+3
3+9-6
--------------------
-14 +9 + 9
-14-42+28
--------------------
51-19
Quotient = x^2+3x-14
Remainder = 51x-19
(x^4+6x^3-7x^2+3x+9) = (x^2+3x-14) (x^2+3x-2)+51x-19
2. A=x^3+6x^2+6x-6 B=x^2+3x-3
1+3
---------------------
1+3-3 ) 1+6+6-6
1+3-3
--------------
3+9-6
3+9-9
-------------
3
Quotient = x+3
Remainder = 3
x^3+6x^2+6x-6 = (x+3) (x^2+3x-3)+3
Alternative method :
Let x^3+6x^2+6x-6≡(Px+Q) (x^2+3x-3)+Rx+S
x^3+6x^2+6x-6≡Px^3+3Px^2-3Px+Qx^2+3Qx-3Q+Rx+S
x^3+6x^2+6x-6≡Px^3+(3P+Q)x^2-(3P-3Q-R)x-3Q+S
Compare the coefficients :
P=1 . . . . . . . . . . . (1)
3P+Q=6 . . . . . . . . (2)
-(3P-3Q-R)=6
-3P+3Q+R=6 . . . . (3)
-3Q+S=-6 . . . . . . . (4)
Put (1) into (2) : 3+Q=6
Q=3
Put P=1 and Q=3 in to (3) : -3+9+R=6
R=0
Put Q=3 into (4) : -9+S=-6
S=3
Therefore x^3+6x^2+6x-6≡(x+3) (x^2+3x-3)+3
2009-09-28 09:02:12 補充:
It is quite obvious that :
In Q1,
x^4+6x^3-7x^2+3x+9 = (x^2+3x-14) (x^2+3x-2)+51x-19
A = (x^2+3x-14) B + 51x - 19
In Q2,
x^3+6x^2+6x-6 = (x+3) (x^2+3x-3)+3
A = (x+3) B + 3
2009-09-28 09:27:42 補充:
In Q1,
x^4+6x^3-7x^2+3x+9 = (x^2+3x-14) (x^2+3x-2)+51x-19
A = (x^2+3x-14) B + 51x - 19
In Q2,
x^3+6x^2+6x-6 = (x+3) (x^2+3x-3)+3
A = (x+3) B + 3