Mathematical induction111

2009-09-27 5:16 pm
(a)
Prove, by mathematical induction, that for all positive integers n.
1^2 + 2^2 + 3^2 + ... + n^2 = 1/6 [n(n+1)(2n+1)]

(b)
Hence, or otherwise, evaluate the following expressions.
(1)
2^2 + 4^2 + 6^2 + ... + (2n)^2
(2)
1^2 - 2^2 + 3^2 - 4^2 + ... - 40^2

(c)
By using the result of (a), or otherwise, deduce the formula for calculating 1x1 + 2x3 + 3x5 + ... + n(2n-1)

回答 (2)

2009-09-27 5:46 pm
✔ 最佳答案
(a) Let P(n) be the statement 12 + 22 + 32 + ... + n2 = n(n + 1)(2n + 1)/6
When n = 1, LHS = 1, RHS = 1(2)(3)/6 = 1
Thus P(1) is true.
Suppose that P(k) is true where k is a positive integer, i.e.
12 + 22 + 32 + ... + k2 = k(k + 1)(2k + 1)/6
Adding (k + 1)2 to both sides:
12 + 22 + 32 + ... + k2 + (k + 1)2 = k(k + 1)(2k + 1)/6 + (k + 1)2
= [(k + 1)/6][k(2k + 1) + 6(k + 1)]
= [(k + 1)/6](2k2 + 7k + 6)
= (k + 1)(2k + 3)(k + 2)/6
Thus P(k + 1) is also true. By the principle of MI, P(n) is true for all positive integers n.
(b 1) 22 + 42 + 62 + ... + (2n)2 = 22(12 + 22 + 32 + ... + n2)
= 4n(n + 1)(2n + 1)/6
= 2n(n + 1)(2n + 1)/3
(2) 12 - 22 + 32 - 42 +... - 402 = (12 + 22 + 32 + 42 +... + 402) - 2(22 + 42 + 62 +... + 402)
= 40(41)(81)/6 - 40(21)(41)/3
= 22140 - 11480
= 10660
(3) 1x1 + 2x3 + 3x5 + ... + n(2n-1)
= 2(12 + 22 + 32 + ... + n2) - (1 + 2 + ... + n)
= n(n + 1)(2n + 1)/3 - n(n + 1)/2
= [n(n + 1)/6][2(2n + 1) - 3]
= n(n + 1)(4n - 1)/6

2009-09-27 09:49:36 補充:
Some corrections for b2:
(2) 1^2 - 2^2 + 3^2 - 4^2 +... - 40^2 = (1^2 + 2^2 + 3^2 + 4^2 +... + 40^2) - 2(2^2 + 4^2 + 6^2 +... + 40^2)
= 40(41)(81)/6 - 80(21)(41)/3
= 22140 - 22960
= - 820
參考: Myself
2009-09-27 5:49 pm
(b)(2) is negative.


收錄日期: 2021-04-13 16:51:46
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090927000051KK00314

檢視 Wayback Machine 備份