quadratic equation

2009-09-25 2:58 am
Given that r is a root of the quadratic equation x^2-3x-5=0, find the value of r^5-3r^4-5r^3+2r^2-6r.


THANK U!

回答 (2)

2009-09-25 3:34 am
✔ 最佳答案

r^5 - 3r^4 - 5r^3 + 2r^2 - 6r
= r^3(r^2 - 3r - 5) + 2r^2 - 6r
= r^3 (0) + 2r^2 - 6r
= 2(r^2 - 3r)
= 2 * 5
= 10
2009-09-25 3:37 am
r^5-3r^4-5r^3+2r^2-6r
=r(r^4-3r^3-5r^2+2r-6)
=r[r^2(r^2-3r-5)+2r-6]
=r(2r-6)
=2r(r-3)
Since r^2-3r=5=>r-3=5/r
So 2r(r-3)=2r(5/r)=10


收錄日期: 2021-04-21 22:03:26
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090924000051KK01239

檢視 Wayback Machine 備份